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Bayesian Principles

- V. Dose

Los Alamos Nat. Lab
April 3 — 5, 2000



The probability axioms
The product rule (axiom I)
p(H,D|I) = p(H|I)p(D|H,I)
= p(D|Dp(H|D, I)

Bayes theorem

p(D|H,I)
p(D'I) e

p(H|D,I) = p(H|I)

the sum rule (axiom II)
p(Hy + H|I) ~=‘ p(H1|I) + p(Ho|I) — p(Hy, Ha|I)
for H; mutually exclusive and exhaustive
p(Y HiI) = 1
marginalisation‘ |
>_p(D,Hi|I) = p(D, Y Hi|I) = p(DII) - p(3_ Hy| D, T)
-~ | | - G ]

- , . y
sum rule product rule

iR

p(DID) = [t p(D, HI)




Example: sum and product rule, Bayes theorem

Urn with w und b balls with masses m und M.

o,B | #[P(e,B)
w,m| 100 0.1
w,M] 200| 0.2
bm | 300 0.3
b,M| 400| 04
1000 1.0
P(w) = P(w,m)+ P(w, M)
=01+02 = 03
P(M,w)
_ P(M,w)
~ P(m,w)+ P(M,w)
0.2 2

014+02 3




Assigning probabilities

(A) The principle of maximum entropy

S = —/p(a:) Inp(z) dz

testable information

MI(p) = [ g(o)p(z)da

o = a{ ~ [ p@)inp(a) + A (M9 / 9(@)p(2)ds ) |
= [ op {~Inp(z) - 1 1= 9@ =0

solution: i} p(z) = poexp {—Ag(x)}

special cases: (g(z) =1,M9=1), (¢9(z) =z, M9 = M)
p(x) = exp{-a/u} /u, 0<z<oo
(9(2)=1,M9=1), (g(z)=z,MI=p), (g(x)=02, MI=02+i2)

p(z) = exp {—Tiz(w — ,LL)Q} /a\/ﬂ, -0 <z <00




Assigning probabilities

(B) Transformation invariance

p(z|1)ds = p(y|T)dy

1.) let 2 be a location variable

transform y =z + b

p(z|I) dz = p(x + b|I) dx Vb

p(x|I) = const —o00 < <00

p(z|I) =1/2B, B — o
2.) let z be a scale variable

transform y = az, dy = adx

- p(z|I) dz = a p(ax|I) do DC&-‘.&\ P’*"W

p(z|ll) =1/z  0<z<o0




‘Marginalization: An example

N .
- 1 1
dla, T, o,1) = ex _.____E:d._ 2
p( I ) (0‘\/2—71’-) p{ 252 £ (d; — az;) }

p(d|Z, 0, I)

/p(ci: al|Z, o, I)da
/p(alf, ¢, Do(dla, &, o, I)da

I

choose flat prior for a

1
) = — —A<a< A
| N
. 1 1 A 1 2
d#. 0, 1) =—| — /ex-————— di — az)2 d
p(d|f, o, 1) 2A<a\/§F) A p{ 252 24 ‘“””)} ’
define

S d; = Nd, Y wd; = Nzd, Y d? = Nd2, Y. z? = Na?

N 2 1
- | 1 1 2mwo< | 2
dl€,o, 1) = —
p(d ) 2A (a 27r> { N2 }




Product rule: An illustration

1 { 2 y2 Qawy} 1——\/1_a2
)Z_

p(a,y) = ZoP 202 205 2030y 2050y
0<a<l
product rule
p(z,y) = p(0)p(yla)

sum rule . . -

| | . 1 ’ £C2 2
p(z) = /p(w,y)dy = —Z—-ayx/é_'z?exp {— s(1-a )}

20%

_ p(z,y)
p(ylz) = (@)

_ __1__ Oy 2
Plyle) = oy\/ﬂexp{ 20 (y-l—aa:mc) }

p(z,y) = series of shifted Gaussians p(y|z)
with amplitude given by p(z)






Bayesian model comparison

p(da, &, o, M1)=< ) eXD{—Q— > (d; - awi)z}

2
0% =1

)

a,Z, o, M>)= | exp{———= d; —a (e —1
p(dle, 3,0, M) =( =) bl 3 (0 a(e 1)

¥
L 1

Sought

p(M;|d, &, o)

Bayes Theorem

p(M;|Z, o) - p(d|E, o, M;)

M-ci::i:’,a = =
p(Mild, %, 0) p(diE, o)

p(MiIOZ:_ Z,0) _ p(M;|Z,0) p(d|Z, o, M;)
p(Mgld,Z,0) p(Mg|Z,0) p(d|Z,o, My)
prior odds Bayes factor By

~




Calibration of Bayes factor B¢*’

Bio In By evidence for M;
<1 | <0 negative (supports My)
1.3 0--1 barely worth mentioning
3--20 13 positive
20 -- 150 3.5 - strong
> 150 >5 very strong

¥ After A. E. Rafftery in "Markov Chain Monte Carlo in Practice",
edited by Gilks, Richardson and Spiegelhalter, Chapman and Hall 1996



Approximate consideration’

p(CZIf, g, Ml)

/p(glMl) ’ p(ﬂ@ g, é: Ml)dé’

Q

(Ginry) - [ df £(8)

~ p(8|My) - £(8)(060)"1

[ p(@01)dd = 1 = p(@BiMs) - (20)P

(dl,0,341) ~ £8) (20

Bio =

£(6, M») ( 86 )Ez—El
L£(0,M1) \A6
>1 <1
Occam’s factor

D
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1st Referee's Report

The paper deals with an elegant technique based on Bayesan data :«ma:lym for the
deconvolution of eedf from optical measurements.

The paper can be published after small revision raking into account these minor comments:
1) the most extensive calculations of eedf in Helium are reported By Capriati et al. Plasma
Chemistry and Plasma Processing 12,237(1992)

2) It should be intcresting to compare for non local effects with the measurements of Dilecce
et al?]. Appl. Phys., 69 (1991) 121-128.for RF plasmas
3) The authors should better report about their Langmuir probe measurements of eedf

Board Member's Report

This is an interesting paper which merits publication with some very minor revisions. The
authors have utilized Bayesian statistics in an ingenious way to determinc the most probable
electron encrgy distribution fwaction without constraining the analysis with assumprions about
the functional foxm. This is a very nice piece of work.

I have a few suggestions fior improvement in the paper. At same point, it would: be-helpful if
the authovs listed the wavelemgths of the spectral limes that they used. This could, for-example,
be included in Table 1 with lirdle imcrease in the lemgth of the paper.

There is a point of terminology which needs to be improved to reduce confusion. At several
points in the paper, the authors say that a certain fearure in the diswdbution function is “hardly
significant”. See, for example, the discussion on page 14. To me, this phrase means “not
significant at all”. However, the context suggests thar the awtliors are using it to mean
“marginally significant” or “barely significant”. The authors should improve the pheasing so
that there is no possibility of confusion.



